
KSD-TR-86-112 

Technical Report 
768 

Colonel Richard's Game 
Part I: Elementary Version 

A.A. Grometstein 

15 January  1987 

Lincoln Laboratory 
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LKXINCTON, MASSACHUSETTS 

Prepared for the Department of the Army under 
Electronic Systems Division Contract F19628-85-C-0002. 

Approved  for public release; distribution  unlimited. 

ANA m*W 



The work reported in this document was performed at Lincoln Laboratory, a 
center for research operated by Massachusetts Institute of Technology, with the 
support of the Department of the Army under Contract F19628-85-C-0002. 

The views and conclusions contained in this document are those of the contractor 
and should not be interpreted as necessarily representing the official policies, 
either expressed or implied, of the United States Government. 

This technical report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

Lti^~*-jJ' TsjWaO^N 

Thomas J. Alpert, Major, USAF 
Chief, ESD Lincoln Laboratory Project Office 



MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
LINCOLN LABORATORY 

COLONEL RICHARD'S GAME 
PART I: ELEMENTARY VERSION 

A.A. GROMETSTEIIS 
Division 3 

TECHNICAL REPORT 768 

15 JANUARY  1987 

Approved  for public release; distribution  unlimited. 

LEXINGTON MASSACHUSETTS 



ABSTRACT 

Colonel Richard's Game, a two-player, single-stage, zero-sum abstract 
game, is defined. It is based on a military offense-defense situation and is a 
variant of the classical Colonel Blotto's Game. 

Colonel Richard's Game is described, an elementary version is solved, and 
extension to more complex versions discussed. 
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COLONEL RICHARD'S GAME 
PART I: ELEMENTARY VERSION 

1.    INTRODUCTION 

A two-person, single-stage game, 'Colonel Richard's Game', is defined and examined. The 
game is a variant of one known in the literature as 'Colonel Blotto's Game'; the latter game is 
discussed first and then the variant. 

A knowledge of elementary Game Theory is assumed. 

2.    COLONEL BLOTTO'S GAME 

This game, well known to game-theoreticians, is played between two antagonists, Blue and 
Red. Colonel Blotto, leader of the Blue forces, contends with his opposite number, Colonel Kije 
of the Red forces, for control of a number of passes through the mountain range that separates 
the two armies. 

Blotto can dispose of N units of military force, while Kije can dispose of M units. Each 
commander allocates his units among the mountain passes: so many to Pass I, so many to 
Pass 2, etc. On the day of confrontation, control of a pass is won by whichever party has more 
units of force at that position. If the Blue and Red forces at a pass are equinumerous, neither 
side controls the pass. Blue gains one point for each pass it controls and loses one point for each 
pass that Red controls. 

Blotto disposes his forces to maximize his gain and Kije his forces to minimize Blue's gain. 
In general, optimal play requires mixed, rather than pure, strategies for each side. The salient 
aspects of a Blotto game, for our purposes are: 

(1) Each commander has finite, discrete resources that are partitioned among a 
limited number of stations ('passes'). 

(2) The gain resulting from the confrontation at a station depends only on the 
Blue and Red forces there. That is, conditions at one station do not influence 
the outcome at another station. 

3.    COLONEL RICHARD'S GAME 

A military engagement problem propounded by Dr. Richard S. Ruffine, USDDRE, leads 
naturally to a variant of Colonel Blotto's Game, and has been named 'Colonel Richard's Game' 
by the writer of this report. 

Colonel Richard's Game shares with Colonel Blotto's Game the first aspect mentioned above 
(namely, that of finite, discrete resources), but differs in the second aspect: that is, conditions at 
one station can influence the results at another. 



In its full ramifications, Colonel Richard's Game is difficult to solve; the present report deals 
with an elementary version of the game. Some results are given for the elementary game, both 
for their intrinsic interest and to introduce the new game to the reader, in anticipation of future 
results on more complex versions of the game. 

3.1.    RULES OF COLONEL RICHARD'S GAME 

Two forces, Blue and Red, are in contention: Red uses interceptor weapons to defend a base 
that Blue will attack with missiles. The base, sited on an island, is protected by a radar that can 
detect Blue missiles and guide interceptors to destroy them. Blue has a radar-attack boat (RAB) 
from which missiles can be fired at the radar in an attempt to render it inoperative, and Red can 
try to prevent this by allocating interceptors to defend the sensor. The remaining Blue missiles 
subsequently are fired from a base-attack boat (BAB) against the Red base itself, to be countered 
by the remaining Red interceptors. 

The two phases of the battle are governed by the following rules: 

Phase 1: Some (or none) of the Blue missiles are launched against the radar, which is 
defended by some (or none) of the Red interceptors. If the number of attacking missiles 
exceeds the number of defending interceptors, the radar is destroyed, otherwise it is 
unharmed. 

Phase 2: The remaining Blue missiles are then launched against the Red base, which is 
defended by the remaining Red interceptors. If the radar was rendered hors de combat 
in Phase 1, all missiles reach their target; if the radar is still operational, each Red 
interceptor neutralizes one Blue missile, and only the excess missiles, if any, reach their 
target. 

The following rules apply to the battle as a whole: 

Allocation: Blue may partition his missiles between his RAB and BAB in any way, but 
the missiles on the RAB cannot be used against the base, nor those on the BAB against 
the radar. Similarly, after Red has assigned certain interceptors to protect the radar, he 
cannot use them to protect the base, nor can the base interceptors protect the radar. 

Scoring: Blue scores one point for each missile that reaches its target at the Red base. 
Destroying the radar does not, per se, gain points for Blue. 

Foreknowledge: Each side knows the opponent's stockpile of weapons, but not the 
allocation of weapons between Phases 1 and 2. 

While, in the general version of Colonel Richard's Game, Blue may have several RABs and 
several BABs, and Red may have several radars, in this report we consider only an elementary 
version of the game, namely, one in which Blue has one RAB and one BAB, and Red one radar. 
In the main body of the report, we treat the case in which Blue and Red have the same number 
of weapons; finally, we extend our results to the case where they have different numbers of 
weapons. 



3.2.    PAYOFF MATRIX OF THE ELEMENTARY GAME, EQUAL STOCKPILES 

The elementary game, if Blue and Red have N weapons each, has a payoff or game matrix, 
G(N), of the form: 

G(N) '   0 12      3 

N- 1       0        1       2 

N-2   N-2    0       1 

.   0 

1 

0 0 

0 

0 

N   ' 

N- 1 

N-2 

1 

0 

The entry in the i,h row and jth column of G(N), gn, is the gain to Blue (= the loss to Red) 
if Blue fires i missiles at the radar and Red defends that sensor with j interceptors 
(0 ^ i, j ^ N)*. Thus: 

(a) The entries on the main diagonal, gjj = 0, correspond to the outcome in which 
the i missiles attacking the radar in Phase 1 are successfully countered by the 
i interceptors defending it, and the N - i missiles attacking the base in Phase 2 
are neutralized (with the assistance of the radar) by the N - i interceptors 
defending the base. Blue's gain is 0, because no missiles reach the base. 

(b) The entries above the main diagonal: 

gij = j - i;     j > i 

correspond to the outcome in which Red allocates more interceptors to 
defend the radar than Blue sends missiles to attack it. The radar survives to 
guide the base interceptors, but there are fewer of these than there are 
attacking missiles and the excess missiles score. In the extreme case, j = N, in 
which Red uses every interceptor to defend the radar, every missile that Blue 
fires against the base scores. 

(c) The entries below the main diagonal: 

gij = N - i;       j < i 

correspond to the outcome in which the radar is destroyed because too few 
interceptors are allocated to defend it. Hence, all the missiles launched against 
the base score. 

* It will be convenient, throughout this report, to enumerate the rows of payoff matrices as 
starting from the 0th row (not the 1st), and similarly with the columns. The ith row, then, relates 
to the use of i missiles against the radar, and the jth column to the use of j interceptors to defend 
the radar. A similar convention applies to vectors, the initial component of which is the 0th. 



It is clear, both from the description of the game and from the form of G*, that if Red 
knew Blue's choice of radar-attack missiles (i.e., the value of i), he would nullify Blue's score by 
choosing j = i; that is, Red would choose as many interceptors to defend the radar as there are 
attacking missiles. Conversely, if Blue knew Red's choice of radar-defense interceptors (the value 
of j), he would attack the radar with just the number of missiles — either 0 or j + 1, depending 
on the value of j — to gain the maximum possible score. (Note that Blue would not necessarily 
choose to destroy the radar.) However, under our assumptions, neither side knows the other's 
choice and the outcome is problematical. 

As we shall see, for the general value of N, there is no saddle point to the game and each 
party should use a mixed strategy. That is, Blue should choose the value of i from some 
probability distribution, depending on the value of N; similarly, Red should choose the value of j 
according to some other stochastic law. If both parties play properly, the resulting value of the 
game, v, is optimal in the usual game-theoretic minimax sense. That is, v is as large as Blue 
could reasonably expect in repeated play against an intelligent Red player, and is at the same 
time as small as Red can reasonably expect to keep it against an intelligent Blue player. By the 
nature of the game, of course, v is a non-negative number, 0 ^ v ^ N. 

The solution of the game takes the form of two (N + l)-component strategy vectors, B and 
R. The ith component of B, bi? is the probability that Blue allocates i missiles to his RAB to 
attack the radar; the jth component of R, ry is the probability that Red allocates j interceptors to 
defend the radar. Here, 0 ^ i, j ^ N, each component of B and R must lie in the interval 0 to 1, 
and the sum of the components of each vector must be unity. 

We remark that not all of a player's available strategies need be represented by positive 
probabilities in his strategy vector. Some strategies (that is, choices of i or j, as the case may be) 
might be so poor that they should never be played. Such strategies are represented by 'O's in the 
strategy vector and are known as inactive strategies; strategies that are played with some nonzero 
probability are known as active strategies. 

3.3.    SOLUTION OF THE GAME 

Let J be an (N + l)-component row vector consisting of Ts. Then if the game matrix is such 
that all strategies are active, we can express the value of the game as: 

v = l/fJG-'J1) (1.1) 

where t' indicates 'transpose'. Then Blue's strategy vector is: 

B = vJG"1 (1.2) 

while Red's strategy vector is: 

R = vJ(G-')1       • (1.3) 

* For typographical convenience, we often will write G in place of G(N), where no confusion can 
result. 



(see Reference I, Chapter 2; Reference 2, Chapter 2; or Reference 3, Chapter 3). Equations (1) 
can be modified to account for the case of G being singular, but all the matrices we will wish to 
invert will, in fact, be regular. 

We can also determine the mean number of missiles that Blue will launch from the RAB at 
the radar; it is: 

Eb = BKt 

where K is an (N + l)-component row vector whose ith entry is kj = i. 

Similarly, the mean number of interceptors that Red will assign to protect the radar is: 

Er = RKl 

3.4.    RESULTS FOR SMALL N 

We shall examine the game in detail for some small values of N. 

3.4.1.    Case, N = 1 

(2.1) 

(2.2) 

This smallest game has the payoff matrix: 

G(l) = 0    [ 

0    0 

Blue scores only in the circumstance that he sends his single missile to the base while Red 
uses his single missile to defend the radar. Uniquely, this game has a saddle point, since Red wil 
choose j = 0, and the value of the game is v = 0, regardless of Blue's action. 

3.4.2.    Case, N = 2 

The payoff matrix is: 

0(2) = "0    1    2 

1    0    1 

0    0    0 

The third column is dominated by each of the other columns and the third row is dominated 
by each of the other rows. These conditions imply, respectively, that strategies j = 2 and i = 2 are 
inactive. Discarding these strategies, we have the reduced matrix, continuing only active 
strategies: 

G' = '0    1" 

1    0 



whence, from Equations (1) and (2): 

B =  [1     1    0]/2;        R = [1    1    0]/2 

and: v =   1/2;        Eb = Er = 1/2 

Note that, in forming B and R, we insert 'O's in the locations of the inactive strategies that 
are not represented in the reduced matrix. 

3.4.3.    Case, N = 3 

The payoff matrix is: 

G(3) = [0    1    2    3" 

2    0    12 

110    1 

.0   0   0   0. 

Column 3 and Row 3 are dominated: the matrix reduces to: 

G' = "0 1 2" 

2 0 1 

.1 1 0_ 

We find: v =  5/6;        Er = 5/6;       Eb = 7/6 

B =  [2    1    3    0]/6 

R =  [2    3    1    0]/6 

As for the case, N = 2, we have Er = v; that this is true for all G(N) is shown in 
Appendix A. 

3.4.4.    Case, N = 4 

The payoff matrix is: 

G(4) = p)    1    2    3    4" 

3    0    12    3 

2    2   0    12 

1110    1 

0    0    0    0    0 



Strategies i, j = 3, 4 can be deleted by arguments of dominance, leading to the solution: 

v =  7/6;       Eb = 5/6 

B =  [6    2    4    0    0]/12 = [0.50    0.17    0.33    0    0] 

R =  [3    4    5    0   0]/12 = [0.25    0.33    0.42    0   0] 

The players, it will be noted, will never deploy three or four weapons against or in defense 
of the radar. Had the inactive status of strategies i, j = 3, 4 not been recognized — that is, had 
either or both of these strategies been left in the game matrix — then B or R would have been 
found to contain a negative component: a sure sign that the reduced matrix was not in its final 
form. 

In the game G(N), dominated strategies occur in pairs (for the same values of i and j, that 
is) and are found among the highest-order row-column pairs. These circumstances make it easy 
to recognize and delete the inactive strategies. 

3.5.    HIGHER VALUES OF N 

We have solved the elementary version of Colonel Richard's Game for values of N up to 20. 
The results are shown graphically in Figure 1, and the strategy vectors are listed in Appendix B. 
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20 

Figure I.    Value of game and number of radar missiles for game G(N). 



The value is approximately linear with N, with a slope of 0.366, i.e., each unit increase in N 
brings Blue an additional return of 0.366 — the more missiles there are in the game, the greater 
Blue's score. Considering the solutions for 2 ^ N ^ 20, the correlation coefficient of v against N 
is in excess of 0.999; the line of regression of v upon N is given by: 

v = -0.273 + 0.3655 X N 

Since Er = v, we have just described the behavior of Er. 

The graph of Eb is erratic: it has a general slope of roughly 0.27 — less than that of v — 
and the local behavior of Eb is nonmonotonic; the staircase behavior is associated with Ac, the 
number of active Blue (or Red) strategies. An examination of the results in Appendix B discloses 
that a unit increase in N is, more often than not, accompanied by a unit increase in Ac — that 
is, the number of inactive strategies grows more slowly than N. Eb increases with N except when 
the number of inactive strategies also increases, and it is precisely at those values that Eb 

decreases. The behavior of Eb for large values of N is not known. 

It is interesting to note the patterns in the structures of the two strategy vectors displayed in 
Appendix B; they suggest the following optimum strategies for the two contestants: 

Blue should direct all his missiles against Red's base about 40% of the time, and should 
attack the radar to some degree the remaining 60% of the time. In the latter case, the 
number of missiles sent against the radar varies from 1 to (Ac - 1), as chosen from a 
gently increasing ramp of probabilities. 

Red should allocate from 0 to (Ac - 1) missiles to defend the radar; the probabilities 
for these actions form a ramp of linearly increasing values, commonly with a slight dip 
for the probability of assigning (Ac - 1) missiles. 

The consequence of such tactics is that Blue will realize an optimal score of approximately 
v = 0.366 X N. 

3.6.    UNEQUAL STOCKPILES 

So far, we have considered the case in which Blue and Red have the same number of 
weapons. We now extend these results to the case of unequal stockpiles. We designate the game 
in which Blue has N weapons and Red has M by the symbol, G(N, M); this symbol also 
identifies the payoff matrix of the game. The equinumerous game treated previously is, 
G(N, N) = G(N). 

3.6.1.    Blue Has More Weapons than Red (N > M) 

The payoff matrix for G(N, M) is of size (N + 1) X (M + I), but the additional (N - M) 
rows are dominated and can be eliminated. The resulting (M + 1) X (M + 1) reduced matrix is 
identical to the matrix, G(M), for the equinumerous case, except that each entry has been 
increased by (N - M). It is easy to show (e.g., exercise in Reference 1, Chapter 1), that the 



strategy vectors for G(N, M) are the same as those of G(M) and that the value of the new game 
is (N - M) more than that of the equinumerous game. This argument disposes of the case 
N > M. 

3.6.2.    Blue Has Fewer Weapons than Red (N < M) 

This situation is more complicated, because the form of the payoff matrix changes radically, 
and there is no simple relation between the new game and the equinumerous game. For example, 
if Blue has three missiles and Red has four interceptors, the matrix is: 

G(3, 4) = 0 0 12 3 

2 0 0 12 

110 0 1 

0    0    0    0    0 

From considerations of dominance, strategies i = 1, 3 and j = 0, 3, 4, can be eliminated, 
giving the reduced matrix: 

G' 0 1 

1 0 

which we have already encountered in the game, G(2), but this is a coincidence. The strategy 
vectors are: 

B 

R 

and: 

[1 0 

[0 1 

1/2; 

1   0]/2 

1    0   0]/2 

Eb= i; Er = 3/2 

a solution we have not previously seen. We observe that Er no longer equals v: indeed, it can be 
shown, using arguments similar to those in Appendix A, that for the game G(N, M), 
Er = v + (M - N), whatever the relative values of N and M, so that we need not calculate Er 

independently. 

We remark that the structure of the strategy vectors for the game G(3, 4) is characteristic of 
the solutions for any game, N < M, in the following respects: 

R consists of an initial block of (M - N) '0's, followed by a block of nonzero 
coefficients, and terminated by a block of '0's. Note that Red never fails to protect the 
radar to some degree (that is, r0 = 0). 

B consists of a non-null b0, followed by a block of (M - N) '0's, followed by a block of 
nonzero coefficients, and terminated by a block of consecutive '0's. Blue has the same 
number of active strategies as does Red. Note that Blue may fail to attack the radar 
(that is, b0 > 0). 



Figures 2, 3, and 4 plot v and Eb for G(N, N + 1), G(N, N + 2), and G(N, N + 3) for small 
values of N; the staircase variation of Eb, associated with the number of active strategies, persists. 
The general trend may be guessed. 

UJ 

2 4 6 8 10 

NUMBER OF BLUE MISSILES (N) 

12 R 

Figure 2.    Value of game and number of radar missiles for game G(N, N + I). 

2 4 6 8 10 

NUMBER  OF BLUE MISSILES (N) 

12 
R 

Figure 3.     Value of game and number of radar missiles for game G(N, N + 2). 
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o 
2 4 6 8 10 

NUMBER  OF BLUE MISSILES (N) 

Figure 4.    Value of game and number of radar missiles for game G(N, N + 3). 

3.6.3.    Large Values of (M - N) 

For given N, the value of the game decreases monotonically with increasing M. If 
M ^ 2N - I, we have v = 0, since, with that many weapons, Red can defend the radar with N - I 
interceptors while reserving N weapons to protect the base; in this way, Red suffers no loss 
whatever Blue does. 

4.    CONCLUDING REMARKS 

We have defined Colonel Richard's Game and analyzed an elementary version of it. Further 
work will be directed at cases in which Blue has more than one boat with which to attack the 
radar and/or more than one boat with which to attack the base, and in which Red has more 
than one radar to defend its territory. 

11 



APPENDIX A: PROOF THAT Er = v FOR THE GAME G(N) 

Consider the (N + 1) X (N + 1) matrix: 

Q =   T 0       1       2      3     . . . 

where the entries in the first row are as shown and the entries elsewhere may have any value, 
except that we assume that Q is nonsingular. We will show that Q, and therefore a fortiori G', 
has what we will call the Unit Property: 

KQ'J1 = 1 

Write the inverse of Q as: 

Q"1 = [qo   1l    •••   IN] 

where q; is an (N + l)-component column vector. Then, since: 

K = [0    1    2    ...    N] 

is the same as the first row of Q, we have, by definition of the inverse of a matrix: 

Kq0= 1 

Kq, =0 

KqN=0 

so that: 

KQ-1 = [1    0    ...    0] 

and we have immediately, KQ-'J1 = 1, the Unit Property. 

This property arises from the fortuitous identity of the first line of the payoff matrix with 
the vector, K, used in calculating the expected number of interceptors defending the radar. From 
the fact that the payoff matrices, full or reduced, of Colonel Richard's Game G(N) have the Unit 
Property, we find (assuming that G' has an inverse, which is always true for N > 1): 

Er = RKl = vJ(G')tKt 

= v(KG-'Jt)t 

Therefore, the expected number of interceptors that Red will use to protect the radar equals 
the value of the game. 

12 



APPPENDIX B: STRATEGY VECTORS FOR G(N) 

This Appendix lists the values of B and R for 1 < N ^ 20. 'Ac' indicates the number of 
active strategies; the number of inactive strategies is, of course, (N + 1 - Ac). The symbol, \ .]' 
indicates that the remainder of the vector is to be filled in with '0's. A positive entry that rounds 
off to 0.00 is indicated by '.0+'. 

<J Ac 

1 1 B = [ any ] 
R = [0 1] 

2 2 B = [.50 .50 . .] 
R = [.50 .50 . .] 

3 3 B = [.33 .17 50 . .] 
R = [.33 .50 .17 . .] 

4 3     B = [.50 .17 33 ..] 
R = [.25 .33 .42 . .] 

5 4     B = [.40 .10 .17 .33 . .] 
R = [.20 .25 .33 .22 . .] 

6 5     B = [.33 .07 .10 .17 .33 . .] 
R = [.17 .20 .25 .33 .05 . .] 

7 5     B = [.43 .07 .10 .15 .25 . .] 
R = [.14 .17 .20 .25 .24 . .] 

8 6     B = [.38 .05 .07 .10 .15 .25 . .] 
R = [.12 .14 .17 .20 .25 .12 . .] 

9 7     B = [.33 .04 .05 .07 .10 .15 .25 . .] 
R = [.11 .12 .14 .17 .20 .25 .0+ . .] 

10 7     B = [.40 .04 .06 .07 .10 .13 .20 . .] 
R = [.10 .11 .12 .14 .17 .20 .15 . .] 

11 8     B = [.36 .04 .04 .06 .07 .10 .13 .20 . .] 
R = [.09 .10 .11 .12 .14 .17 .20 .06 . .] 

12 8     B = [.42 .04 .04 .06 .07 .09 .12 .17 . .] 
R = [.08 .09 .10 .11 .12 .14 .17 .18 . .] 

13 9     B = [.38 .03 .04 .04 .06 .07 .09 .12 .17 . .] 
R = [.08 .08 .09 .10 .11 .12 .14 .17 .10 . .] 

14 10     B = [.36 .03 .03 .04 .04 .06 .07 .09 .12 .17 . .] 
R = [.07 .08 .08 .09 .10 .11 .12 .14 .17 .03 . .] 
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15 10 B = [.40 .03 .03 .04 .04 .06 .07 .08 .11 .14 . .] 
R = [.07 .07 .08 .08 .09 .10 .11 .12 .14 .13 . .] 

16 11  B = [.38 .02 .03 .03 .04 .04 .06 .07 .08 .11 .14 . .] 
R = [.06 .07 .07 .08 .08 .09 .10 .11 .12 .14 .07 . .] 

17 12 B = [.35 .02 .02 .03 .03 .04 .04 .06 .07 .08 .11 .14 . .] 
R = [.06 .06 .07 .07 .08 .08 .09 .10 .11 .12 .14 .01 . .] 

18 12 B = [.39 .02 .03 .03 .03 .04 .04 .05 .06 .08 .10 .12 . .] 
R = [.06 .06 .06 .07 .07 .08 .08 .09 .10 .11 .12 .10 . .] 

19 13 B = [.37 .02 .02.03 .03 .03 .04 .04.05 .06.08 .10.12 ..] 
R = [.05 .06 .06 .06 .07 .07 .08 .08 .09 .10 .11 .12 .04 . .] 

20 13 B = [.40 .02 .02 .03 .03 .03 .04 .04 .05 .06 .07 .09 .11 . .] 
R = [.05 .05 .06 .06 .06 .07 .07 .08 .08 .09 .10 .11 .12 . .] 

14 
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GLOSSARY 

Ac 

Active 
Strategy 

B 

BAB 

Blue 

Eb 

Er 

G 

G' 

G(N, M) 

G(N) 

gij 

Inactive 
Strategy 

J 

J 

K 

M 

N 

Q 

R 

RAB 

Red 

t 

v 

Number of active strategies in game 

Strategy played with finite probability 

Blue strategy vector. Components are b; 

Base-attack boat 

Attacking force 

Expected number of Blue missiles that attack radar 

Expected number of Red missiles that defend radar 

Payoff, or game, matrix 

Reduced matrix: game matrix G, with inactive strategies deleted 

Game matrix with N Blue and M Red missiles 

Game matrix with N Blue and N Red missiles [= G(N, N)] 

Gain to Blue if radar is attacked with i missiles and Red defends with 
j missiles 

Number of Blue missiles that attack radar 

Strategy played with 0 probability 

Number of Red missiles that defend radar 

(N + l)-component vector. Components: j, = 1 

(N + l)-component vector. Components: k; = i 

Number of Red missiles 

Number of Blue missiles 

Working matrix. Components are q; (Appendix A) 

Red strategy vector. Components are r: 

Radar-attack boat 

Defending force 

Transpose of a matrix 

Optimal value of an engagement 
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